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On the basis of previous work by the author, equations are derived describing 
one-dimensional unsteady flow in bubble-fluid mixtures. Attention is subse- 
quently focused on pressure waves of small and moderate amplitude propagating 
through the mixture. Four characteristic lengths occur, namely, wavelength, 
amplitude, bubble diameter and inter-bubble distance. The significance of their 
relative magnitudes for the theory is discussed. It appears that for high gas con- 
tent the dispersion is weak and then the conservation of mass and momentum 
lead to equations similar to the Boussinesq equations, describing long dispersive 
waves of finite amplitude on a fluid of finite depth. For waves propagating in one 
direction only, the corresponding equation is similar to the Korteweg-de Vries 
equation. 

It is shown that for mixtures of low gas content the frequency dispersion 
is in most cases not small. Finally, solutions of the Korteweg-de Vries equa- 
tion representing cnoidal and solitary waves in a bubble-liquid mixture are 
given explicitly. 

1. Introduction 
A mixture of liquid and gas bubbles may be considered as a continuous medium 

if appreciable changes of quantities such as velocity and pressure occur over 
distances large with respect to the inter bubble distance. This medium owes mass 
density mainly to the liquid, compressibility mainly to the gas content. If in addi- 
tion all involved frequencies are far below the lowest resonance frequency occur- 
ring in the bubble distribution, only the total gas content per unit of volume is 
important and not the distribution of this gas content over bubbles of specific 
size. The medium may be considered as a (fictitious) homogeneous one. Theories 
analogous to  those for single phase compressible fluids can be constructed. 
Examples of these are given in Hsieh & Plesset (1961) and Campbell & Pitcher 
(1957). In  the first work an expression for the sound velocity in the mixture is 
derived. The second reports a theoretical and experimental study on normal 
shock waves in a bubble water mixture. 

When the above-mentioned condition on the frequencies is not fulfilled the 
interaction of the individual bubbles with the fluid and (through the fluid) 
mutually, has to be considered. A number of investigators have done this by 
taking in a linearized fashion the dynamic response of the individual bubbles into 
account (Carstensen & Foldy 1947; Meyer & Skudzrijk 1953). 
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The propagation of sound waves now depends on the frequency, i.e. the 
medium is dispersive. In  Morse & Feshbach (1953) the multiple scattering of a 
sound wave in a bubble liquid mixture is considered. First, the scattering of a 
sound-wave incident on a single bubble is considered and subsequently by 
summation over the bubbles the velocity potential in the mixture is obtained. 
The results show the dispersion effect and, although obtained in a way different 
from those in the references mentioned earlier, take the same form. All this 
pertains to acoustic, i.e. small amplitude, waves and one may ask how to extend 
this to waves of finite amplitude. A theory both for linear and nonlinear dis- 
persion in a bubble liquid mixture has been developed recently by the present 
author (van Wijngaarden 1964, 1966). 

The essential point in this theory may be summarized as follows. In  a mixture 
of liquid and bubbles we define a pressure p ,  which is the average over a region 
containing many bubbles. In  the same way a velocity u is defined. A relation 
between the volume of a bubble and its pressure p ,  is prescribed. The conserva- 
tion of mass of the mixture is described in terms of the rate of change of the volume 
of the bubbles, whereas the conservation of momentum is expressed in terms of 
the average pressure p. The coupling between the average pressure p and the 
pressure p ,  in the bubble is described by the full non-linear equation for the 
dynamic behaviour of the bubble. This was worked out in van Wijngaarden 
(1964 and 1966, henceforth denoted with I and 11), under the assumption of a 
small volumetric gas ratio. Then (as will be shown in $ 2  below) among the 
nonlinear terms in the momentum equation those arising from the equation for 
the dynamic behaviour of the individual bubbles are dominant. In  I1 the dis- 
persion of small amplitude waves was discussed, which obey the dispersion 

equation 7” 

where w and Ic are the (dimensionless) frequency and wave number respectively. 
In  his written discussion on I1 Dr T. Brooke Benjamin noted that for long 

waves (1.1) is of the same form as the dispersion equation for long gravity waves 
on a fluid of finite depth. Dr Brooke Benjamin suggested that together with the 
amplitude dispersion occurring just as in gasdynamics in the homogeneous 
flow theory the dispersion of waves of finite amplitude propagating through a 
liquid-bubble mixture could be described by an equation of the type of the 
Korteweg-de Vries equation for long water waves. In  the present paper this 
suggestion is followed. 

Whereas in the theory of long water waves there are two parameters, one 
describing the amplitude dispersion and the other the frequency dispersion, the 
present investigation shows that in the case of liquid bubble mixtures there is also 
a third one, the ratio between volumetric liquid and gas fractions. It will be 
shown that in the case where this parameter is of order unity the two others being 
of the same order of smallness, equations similar to the Boussinesq equations for 
water waves hold. 
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2. The equations of motion 
We consider a mixture consisting of gas bubbles with radius R and number 

density n in a fluid with density pr. In  the undisturbed state the pressure both 
in the fluid and in the bubbles is p,. We make the simplifying assumption that in 
the undisturbed state the bubbles have all the same radius R,. Because the density 
of the gas can reasonably be neglected we may write for the mass density p of 
the mixture 

where V = $7rR3. 
In  a unit mass of the mixture the mass of gas is constant. To the same degree 

of approximation as used in (2.1) we have therefore, quantities in the undisturbed 
state being indicated with the subscript 0, 

We focus attention on plane waves, so that all quantities depend on time t' and 
a distance X I .  If the characteristic wavelength is denoted by A we require that a 
region small in extent with respect to h contains many bubbles, or 

nc+ < A. (2-3) 
The velocity in the mixture averaged over such a region is u, the pressurep. The 
liquid is regarded as incompressible which is correct as long as all involved 
velocities remain small with respect to the velocity of sound in the pure liquid: 
p depends therefore through nV on x' and t' .  

The conservation of mass requires 

The momentum equation is, if we leave viscosity effects out of account, 

We cannot, as in ordinary gasdynamics, complete the set of equations directly 
by a relation between p and p.  In the case of a liquid-bubble mixture we first 
prescribe the relation between the pressure pg in a bubble and the density pg. 
Plesset & Hsieh (1960) investigated bubble behaviour under oscillatory con- 
ditions and concluded that in a large range of frequencies, including the high 
frequency limit, the behaviour of the bubble is nearly isothermal. We shall 
therefore assume the isothermal relation 

PglPg = Po/Pgo. (2.6) 

A relation between average pressure p ,  the pressure of the gas in the bubble p g  
and the bubble volume is established as follows. 

Consider a gas bubble in a fluid at  rest. Let the pressure far from the bubble be 
pm. Then the compression or expansion of the bubble is governed by 
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when surface tension is left out of account. This relation is given in Lamb (1932, 
p. 122) and forms the basis of many studies on the behaviour of cavitation bubbles 
(see e.g. Plesset 1962). We suppose that in our liquid-bubble mixture the relative 
motion of bubbles and fluid is so small, that the relation (2.7) may be used withp, 
the average pressure in the mixture at the location X I  of the bubble, in place of 
pa. The expression dRldt‘ is the rate of change of the bubble radius as observed in 
a frame moving locally with the bubble. 

Making use of (2.6) and the fact that the mass of one bubble, Vpg ,  is constant, 
we have 

R = R, k)-+ 
The required relation between p and ps is 

P=Pg-PfRi[ (z )  -+ d2 dt”-(Z)-qdt’($-) 3 d pg -f ) ]  = 
The equations (2.1), (2.2), (2.4)-(2.6), (2.8) and (2.9) determine the unknown 
quantities p, u, p ,  p g ,  pg, n and R of one-dimensional unsteady flow in a bubble- 
liquid mixture. 

3. Linear waves and waves of moderate strength 

(2.2) and (2.6) we obtain 
We choose from the unknown quantities pg/po as a central one. From (2 . l ) ,  

PQIPO 
PgIPo + no Vol(1- no Vo) * P = Pf 

We have therefore 

We attempt to construct a theory for linear waves and waves of moderate 
strength and therefore write 

where E is a small number. Inserting this in (3.2) yields 

PglPO = 1 + &  (3.3) 

When at constant gas fraction the bubble size becomes very small, Ro-+O, it 
follows from (2.9) that pg+p. Under these circumstances (3.4) represents the 
square of the sound velocity of the mixture. If we denote this velocity by c, we 
have in the lowest approximation 

For the following it is convenient to render the independent variables dimen- 
sionless. For X I  we choose a typical wavelength A,  for t‘ the time Aleo. Hence 
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From (3.1) it follows that the magnitude of the variations of p ,  besides depending 
on E ,  also depend on the magnitude of the volumetric gas fraction no&. With a 
view on mass conservation this holds also for u. We therefore render u dimension- 
less by 

To express the mass conservations in terms of v and 6 we write (2.4) as 
u = econoT$. (3.7) 

Using (3.1) and (3.3)-(3.7) this equation reduces, when terms of order €2 and 
lower order a're retained, to 

(3.8) 

Next we also introduce the dimensionless variables in (2.5). For p we insert the 
righthand side of (2.9). Using again (3.1) and (3.3)-(3.7) we obtain 

The non-linear acceleration term of lowest order appears to be of order @no&, as 
the convective term in (3.8). The terms between the square brackets in (2.9), 
associated with the inertia of the fluid displaced by an expanding or compressing 
bubble, are in the dimensionless form preceded by the factor 

(3.10) 

This parameter occurs also in I and 11. There (h/Bo) (no%)+ is used as parameter 
and is shown to govern the dispersion of pressure waves. 

Before expanding the expression between square brackets in (3.9) in terms of E ,  

we consider the magnitude of (r. For this purpose we introduce the ratio between 
bubble radius and wavelength as 

a1 = Ro/h (3.11) 

and the ratio between inter-bubble distance and wavelength as 

a2 = n,j-/A. 

The parameters no& and c can be expressed in terms of a, and a,: 

(3.12) 

(3.13) 

Because for our theory to be valid the wavelength must be large with respect to 
the inter-bubble distance, we assume a2 to be small (cf. 2.3). From (3.12) it  
follows that the ratio a2/al between bubble distance and bubble dimension is 
of order unity for high gas content and large for low gas content. We shall dis- 
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cuss first the case of high gas content, al/az = O( 1). Then it follows from the fact 
that az is small that the dispersion parameter cr is also small. Therefore we as- 
sume v = O(E). 

We proceed to expand the terms associated with CT in (3.10) in terms of E ,  

stopping at one approximation beyond the linear approximation. This yields 

av av ag c a 3 g  

at O O ax ax 3 axat2 
-+en Vv-+(l-n,&s[)-+-- = 0. (3.14) 

The equations (3.8) and (3.14) for v and ( are very similar to the Boussinesq 
equations for long water waves (for a recent discussion on these equations see 
Whitham 1965b). In  that case there are three lengths, namely amplitude, depth 
and wavelength. The Boussinesq equations hold if the ratio between amplitude 
and depth and the square of the ratio between depth and wavelength are 
moderately small and of comparable magnitude. 

In  our case there are four lengths, viz. wavelength, amplitude, bubble diameter 
and inter-bubble distance. We have shown that if the ratio between the last and 
the one but last is of order one, the dispersion is weak and that wave propagation 
is governed under these circumstances by equations very similar to the Bous- 
sinesq equations. 

In  many practical circumstances mixtures are encountered for which the 
inter-bubble distance is appreciably larger than the bubble radii. If for example 
no% is O(s3) then R,/no) = g / a ,  = O(s-l). I n  such a sparse mixture the dis- 
persion parameter IT can be of order one rather than small. With a2 = O(s&), for 
example, and al/az = O(s-l), we have (cf. 3.13) g = O(1). Note that this cannot 
occur in a dense mixture since there al/az is of unit order and az must be small for 
the theory to be valid. 

We conclude that for sparse mixtures higher order terms of the ‘bubble 
equation’ (2.9), from which the terms in the square brackets in (3.9) are deduced, 
must be retained in many cases. This is in fact done in I and I1 where the full 
equations, with however the neglect of no& with respect to unity, are used to 
analyse the dispersion of a finite pressure pulse, in particular (see I) in a cloud of 
cavitation bubbles in water. In  the context of the present investigation we re- 
strict ourselves to the case where g is small of order s. For a sparse mixture, 
no& = O(sk) with k > 1, this implies the condition R,/h = O(s@+l)). For 
CT = O(s) the equations pertaining to a sparse mixture follow from (3.8) and 
(3.14) by simply neglecting the terms with the factor no&. 

4. Some special cases 
When a t  constant gas content R+ 0 and n+ co, thenp = p, (cf. 2.9). Thefluid 

is homogeneous and compressible. For linear waves, s = 0, (3.8) and (3.14) 

ag av -+- = 0, at ax 

reduce with cr = 0 to 

av a t  -+- = 0. 
at ax 
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These equations represent acoustic waves travelling through the mixture at  
unit velocity. In  an approximation one order beyond the linear one, (3.8) and 
(3.14) can be written in characteristic form. From the theory of gasdynamics we 
know that the characteristics are given by 

dx 
at - = en,.V,v 2 (1 + (1  - n,v,)eE), (4.3) 

where use has been made of (3.4). 
The Riemann invariants are in physical variables given by 26. _+ V, where 

Because pg = p we find, using the relations (3.1), (3.3) and (3.5) and introducing 
U = U’/no&co, u = eE+O(@). 

The equations for nondispersive waves (v = 0 )  are therefore in characteristic 

(4.4) 

form 

Consider a wave progressing to the right in an undisturbed mixture. Then 
v = 6, since on the left characteristics v - 6 = 0. The right-going characteristics 

[a + ( m O K v  (1 + ( 1 - no&) €6)) ax - [v EI = 0. 7 
yield ag a6 - + + l + e < ) -  = 0. 

at ax (4.5) 

This relation shows the well-known steepening of a compressive wave sometimes 
described as amplitude dispersion. An equation of the type (4.5) was given also 
by Benjamin (1966) in his discussion of 11. Note that due to the isothermal 
conditions (expressed by (3.4)) the terms with no% in (4.4) just cancel for the 
wave described by (4.5). 

For linear waves, e = 0, the equations (3.8) and (3.14) reduce to 

a6 av -+- = 0, at ax 
av at g a3g 

at ax 3 at2ax 
-+-+-- - - 0. 

Elimination of v leads to 

This equation was derived and discussed in 11. The dispersion equation, obtained 
by seeking solutions of (4.8) of the form exp i ( kx  - o t ) ,  is 

The dispersion parameter cr can also be defined in terms of the bubble resonance 
frequency wB, which is, as follows from (2.9) 

oB = ( ~ P ~ I P , R ~ + -  
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From this relation together with (3.5) and (3.10) it  follows that 

In  the course of his recent work on linear and non-linear dispersive waves 
Whitham (19653) discusses equation (4.8) from the point of view of his theory. 
The linearized Boussinesq equations lead to an equation of the form (4.8). 

5. Waves propagating in one direction 
We return to the full equations (3 .8)  and (3 .14) .  It is known that in the case of 

long water waves the Boussinesq equations can for waves in only one direction 
be reduced to an equation known as the Korteweg-de Vries equation. This 
reduction can be carried out also for our equations. Using the method given by 
Broer (1964), which is based on the fact that (a /a t )+ (a /ax )  = O(E) and also 
v - 5 = O((T) = 0 ( E ) ,  we find for waves travelling to the right 

at 86 a (T a 3 5  -+-+- (+@)+- -  = 0. 
at ax ax 6 ax3 

Becausep,-p = O(c2) andforright-going waves (a/at)  + (a/ax) = O(s), (5.1) holds 
also for ( p  --po)/p0. This equation has the form of the Korteweg-de Vries equation 
from which cnoidal wave solutions and solitary waves are derived in the theory of 
surface waves (Korteweg & de Vries 1895; see also Lamb 1932, $253). These 
waves have evidently their counterparts in bubble liquid mixtures. To obtain 
the solutions representing these waves we put 

€5 = P ( x - C t ) .  ( 5 4  

Introducing this in (5.1), integrating twice and taking t = 0, yields 

(5.3) 

with 

The periodic solution of (7 .2 )  is, a ‘crest’ of the wave being in x = 0, 

C = 1 + i ( (al  - u2) - a3). (5.4) 

P = (a,-a2)cn2 ( p&a3)” . .  - 8) +a29 

where cn is the Jacobian elliptic function and 

The wavelength h is implicitly (we recall that (T contains A) given by 

2rJ 
(5-7) 

K(P) is the complete elliptic integral of the first kind. The mean value of P must 
be zero, which gives the relation 
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where E(P) is the complete elliptic integral of the second kind. For the parameters 
A, C, /3, a,, a2 and a3 we have the four relationships (5.4) and (5.6)-(5.8). When, 
for instance, the maximum pressure a, in the wave and h are chosen, the remain- 
ing parameters follow from these relations. The form of the wave is then de- 
termined by (7.4). A special case is a2 = a3 = 0, obtained when requiring in the 
integration of (5.1) that at  infinity 

dP d2P 
p =z - = ~ = 0. 

ax ax2 

From (5.6) it  follows that P = 1 and, since K(1)  = co, on account of (3.10) 
h = co. The form assumed by (7.4) representing the solitary wave then is in 
dimensional variables 

(5.9) 

The wave velocity is by (5.4) given as e,(l +$a). 

6. Discussion 
The dynamics of bubble-liquid mixtures can under conditions given in the 

preceding sections be described by equations which are similar to the Boussinesq 
equations for water waves. The results given in the present paper open prospects 
in two ways. First, there is a firm body of knowledge regarding the properties of 
solutions of these equations in the theory of water waves. Cnoidal waves and 
solitary waves appear to have their counterparts in the dynamics of liquid- 
bubble mixtures. A powerful tool for the investigation of nonlinear dispersive 
waves is provided by Whitham in a recent series of papers (Whitham 1965a, b, 
1967). In  this work the Boussinesq and Korteweg-de Vries equations are among 
others dealt with. 

Secondly, as Lighthill (1966) has pointed out, there is a need to verify results 
obtained from Whitham's theory experimentally. Lighthill suggested some 
experiments with water waves, including also the effect of surface tension. 

The present work shows that experiments on liquid-bubble flow also may serve 
the purpose of experimental verification. 

The author feels indebted to Dr T. Brooke Benjamin whose discussion of the 
author's paper presented at the 6th Naval Hydrodynamics Symposium at 
Washington has inspired the work reported here. Thanks are due to the referee 
for his comments on an earlier version of the paper. 
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